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Characterizations, Sub and resampling, 

and goodness of fit 

L. Brown1, Anirban DasGupta2, John Marden3 and Dimitris Politis4 

University of Pennsylvania, Purdue University, University of Illinois at Urbana-Champaign, 
University of California, San Diego 

Abstract: We present a general proposal for testing for goodness of fit, based 
on resampling and subsampling methods, and illustrate it with graphical and 
analytical tests for the problems of testing for univariate or multivariate nor- 
mality. The proposal shows promising, and in some cases dramatic, success in 
detecting nonnormality. Compared to common competitors, such as a Q-Q plot 
or a likelihood ratio test against a specified alternative, our proposal seems to 
be the most useful when the sample size is small, such as 10 or 12, or even 
very small, such as 6! We also show how our proposal provides tangible infor- 
mation about the nature of the true cdf from which one is sampling. Thus, our 
proposal also has data analytic value. Although only the normality problem 
is addressed here, the scope of application of the general proposal should be 
much broader. 

1. Introduction 

The purpose of this article is to present a general proposal, based on re or subsam- 

pling, for goodness of fit tests and apply it to the problem of testing for univariate 

or multivariate normality of iid data. Based on the evidence we have accumu- 

lated, the proposal seems to have unexpected success. It comes out especially well, 
relative to its common competitors, when the sample size is small, or even very 
small. The common tests, graphical or analytical, do not have much credibility for 

very small sample sizes. For example, a Q-Q plot with a sample of size 6 would 

be hardly credible; neither would be an analytical test, such as the Shapiro-Wilk, 
the Anderson-Darling or the Kolmogorov-Smirnov test with estimated parameters 

(Shapiro and Wilk (1965), Anderson and Darling (1952,1954), Stephens (1976), 
Babu and Rao (2004)). But, somewhat mysteriously, the tests based on our pro- 

posal seem to have impressive detection power even with such small sample sizes. 

Furthermore, the proposal is general, and so its scope of application is broader than 

just the normality problem. However, in this article, we choose to investigate only 
the normality problem in detail, it being the obvious first application one would 

want to try. Although we have not conducted a complete technical analysis, we still 

hope that we have presented here a useful set of ideas with broad applicability. 
The basic idea is to use a suitably chosen characterization result for the null hy- 

pothesis and combine it with the bootstrap or subsampling to produce a goodness 

1 Statistics Department, The Wharton School, University of Pennsylvania, 400 Jon 
M. Hunstman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340, USA. e-mail: 

lbrovn@wharton.upenn.edu 
2Department of Statistics, Purdue University, 150 N. University Street, West Lafayette, IN 

47907-2068, USA. e-mail: dasgupta@stat.purdue.edu 
3Department of Statistics, University of Illinois at Urbana-Champaign, 116B Illini Hall, 725 S. 

Wright St., Champaign, IL 61820, USA. e-mail: jimarden@uiuc.edu 
4Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112, 

USA. e-mail: dpolitis@ucsd.edu 
Keywords and phrases: bootstrap, characterization, consistency, goodness of fit, normal, mul- 

tivariate normal, power, Q-Q plot, scatterplot, subsampling. 
AMS 2000 subject classifications: 62G09, 62E10. 

180 



Characterizations, Sub and resampling, and goodness of fit 181 

of fit test. The idea has been mentioned previously. But it has not been investigated 
in the way or at length, as we do it here (see McDonald and Katti (1974), Mud- 

holkar, McDermott and Srivastava (1992), Mudholkar, Marchetti and Lin (2002) 
and D'Agostino and Stephens (1986)). To illustrate the basic idea, it is well known 

that if ??, X2,..., Xn are iid samples from some cdf F on the real line with a finite 

variance, then F is a normal distribution if and only if the sample mean X and 

the sample variance s2 are independent, and distributed respectively, as a normal 

and a (scaled) chisquare. Therefore, using standard notation, with Gm denoting 
the cdf of a chisquare distribution with m degrees of freedom, the random variables 

Un = f(v^?Zz?l) and vn = 
??-?(^?~s?2) would be independent U[0,1] random 

variables. Proxies of Un,Vn can be computed, in the usual way, by using either a 

resample (such as the ordinary bootstrap), or a subsample, with some subsample 
size b. These proxies, namely the pairs, w* = (U*,V*) can then be plotted in the 
unit square to visually assess evidence of any structured or patterned deviation 
from a random uniform like scattering. They can also be used to construct formal 

tests, in addition to graphical tests. The use of the univariate normality problem, 
and of X and s2 are both artifacts. Other statistics can be used, and in fact we 
do so (interquartile range/5 and s, for instance). We also investigate the multi- 
variate normality problem, which remains to date, a notoriously difficult problem, 
especially for small sample sizes, the case we most emphasize in this article. 

We begin with a quantification of the statistical folklore that Q-Q plots tend 
to look linear in the central part of the plot for many types of nonnormal data. 
We present these results on the Q-Q plot for two main reasons. The precise quan- 
tifications we give would be surprising to many people; in addition, these results 

provide a background for why complementary graphical tests, such as the ones we 

offer, can be useful. 

The resampling based graphical tests are presented and analyzed next. A charm- 

ing property of our resampling based test is that it does not stop at simply detecting 
nonnormality. It gives substantially more information about the nature of the true 
cdf from which one is sampling, if it is not a normal cdf. We show how a skillful 

analysis of the graphical test would produce such useful information by looking at 

key features of the plots, for instance, empty corners, or a pronounced trend. In 
this sense, our proposal also has the flavor of being a useful data analytic tool. 

Subsampling based tests are presented at the end. But we do not analyze them 
with as much detail as the resampling based tests. The main reason is limitation 
of space. But comparison of the resampling based tests and the test based on 

subsampling reveals quite interesting phenomena. For example, when a structured 
deviation from a uniform like scattering is seen, the structures are different for the 
re and subsampling based tests. Thus, we seem to have the situation that we do 
not need to necessarily choose one or the other. The resampling and subsampling 
based tests complement each other. They can both be used, as alternatives or 

complements, to common tests, and especially when the sample sizes are small, or 
even very small. 

To summarize, the principal contributions and the salient features of this article 
are the following: 

1. We suggest a flexible general proposal for testing goodness of fit to parametric 
families based on characterizations of the family; 

2. We illustrate the method for the problems of testing univariate and multi- 
variate normality; 
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3. The method is based on re or subsampling, and tests based on the two methods 

nicely complement each other; 

4. Graphical tests form the core of our proposal, and they are especially useful 

for small sample sizes due to lack of credible graphical tests when the sample 
size is small; 

5. We give companion formal tests to our graphical tests with some power stud- 

ies; but the graphical test is more effective in our assessment; 

6. We provide a theoretical background for why new graphical tests should be 

welcome in the area by providing some precise quantifications for just how 

misleading Q-Q plots can be. The exact results should be surprising to many. 

7. We indicate scope of additional applications by discussing three interesting 

problems. 

2. Why Q-Q plots can mislead 

The principal contribution of our article is a proposal for new resampling based 

graphical tests for goodness of fit. Since Q-Q plots are of wide and universal use 

for that purpose, it would be helpful to explain why we think that alternative 

graphical tests would be useful, and perhaps even needed. Towards this end, we 

first provide a few technical results and some numerics to illustrate how Q-Q plots 
can be misleading. It has been part of the general knowledge and folklore that Q-Q 

plots can be misleading; but the results below give some precise explanation for 

and quantification of such misleading behavior of Q-Q plots. 

Q-Q plots can mislead because of two reasons. They look approximately linear 

in the central part for many types of nonnormal data, and because of the common 

standard we apply to ourselves (and teach students) that we should not overreact to 

wiggles in the Q-Q plot and what counts is an overall visual impression of linearity. 
The following results explain why that standard is a dangerous one. First some 

notation is introduced. 

The exact definition of the Q-Q plot varies a little from source to source. 

For the numerical illustrations, we will define a Q-Q plot as a plot of the pairs 

(z(i-i/2)/n,X(i)), where za = F_1(1 ? a) is the (1 
- a)th quantile of the stan- 

dard normal distribution and X^) is the ?th sample order statistic (at other places, 

Z(i-i/2)/n is replaced by ^(i+i/2)/(n+i),^(i+i/2)/(n+3/4), etc Due to the asymptotic 
nature of our results, these distinctions do not affect the statements of the results). 
For notational simplicity, we will simply write ?? for Z(?_i/2)/n? The natural index 

for visual linearity of the Q-Q plot is the coefficient of correlation 

? _ S?=???(?(?) -?)_SG=1 ZjXji)_ 
'? ? 

As we mentioned above, the central part of a Q-Q plot tends to look approxi- 

mately linear for many types of nonnormal data. This necessitates another index 

for linearity of the central part in a Q-Q plot. Thus, for 0 < a < 0.5, we define the 

trimmed correlation 

S??k 
v 

? __ _ i=fc+l *?A(t)_ 

vS fc+1 Zi Jli=k+l(X(i) 
~ %* )2 
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where k = [pa], and Xk is the corresponding trimmed mean. In other words, rQ is 

the correlation in the Q-Q plot when 100a% of the points are deleted from each 

tail of the plot. ra typically is larger in magnitude than rn, as we shall see below. 

We will assume that the true underlying CDF F is continuous, although a 

number of our results do not require that assumption. 

2.1. Almost sure limits of rn and ra 

Theorem 1. Let Xi,X2,... ,Xn be iid observations from a CDF F with finite 
variance s2. Then 

Tn - P(F) 

with probability 1. 

Proof. Multiply the numerator as well as each term within the square-root sign in 

the denominator by n. The term ? ?)G=? ?? converges to JQ (F_1(?))2 dx, being a 

Riemann sum for that integral. The second term ? Y^=i(X(i) 
? X)2 converges a.s. 

to s2 by the usual strong law. Since j0 (F~?(?))2 dx = 1, on division by n, the 

denominator in rn converges a.s. to s. 

The numerator needs a little work. Using the same notation as in Serfling (1980) 

(pp. 277-279), define the double sequence tni = (i 
- 

l/2)/n and J(t) = F-1(*)? 
Thus J is everywhere continuous and satisfies for every r > 0 and in particular for 

r = 2, the growth condition \J(t)\ < M[t(l 
- 

?)]1/r-1+<5 for some d > 0. Trivially, 
maxi<i<n \tni ? i/n\ ?> 0. Finally, there exists a positive constant a such that 

a.mini<i<n{i/n, 1 ? 
i/n) < tni < 1 ? a. mini<?<n{z/n, 1 ? 

i/n). Specifically, this 
holds with a = 1/2. It follows from Example A and Example A* in pp. 277-279 
in Serfling (1980) that on division by n, the numerator of rn converges a.s. to 

JQ F~l(x^~l(x)dx, establishing the statement of Theorem 1. 
The almost sure limit of the truncated correlation rQ is stated next; we omit its 

proof as it is very similar to the proof of Theorem 1. D 

Theorem 2. Let Xi,X2,...,Xn be iid observations from a CDF F. Let 0 < a < 

0.5, and 

?a =-?- 

Then, with probability \, 

rQ -> Pa(F) = 

l-2a 

??-"F-iW-Hx)** 

y/?-a(*-H*))2 
dx ' 

I^;a)(x 
- 

??)2 dF(x) 

' 

Theorem 1 and 2 are used in the following Table to explain why Q-Q plots show 
an overall visual linearity for many types of nonnormal data, and especially so in 
the central part of the plot. 

Discussion of Table 1 

We see from Table 1 that for each distribution that we tried, the trimmed cor- 
relation is larger than the untrimmed one. We also see that as little as 5% trim- 

ming from each tail produces a correlation at least as large as .95, even for the 

extremely skewed Exponential case. For symmetric populations, 5% trimming pro- 
duces a nearly perfectly linear Q-Q plot, asymptotically. Theorem 1, Theorem 2, 
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Table 1: Limiting correlation in Q-Q plots. 

No Trimming 5% trimming 
Uniform .9772 .9949 
Double Exp. .9811 .9941 

Logistic .9663 .9995 

t(3) .9008 .9984 

t(5) .9832 .9991 

Tukey distribution .9706 .9997 

(defined as .9N(0,1) + .1N(0,9)) 

chisquare(5) .9577 .9826 

Exponential_.9032_.9536_ 

and Table 1 vindicate our common empirical experience that the central part of 

a Q-Q plot is very likely to look linear for all types of data: light tailed, medium 

tailed, heavy tailed, symmetric, skewed. Information about nonnormality from a 

Q-Q plot can only come from the tails and the somewhat pervasive practice of 

concentrating on the overall linearity and ignoring the wiggles at the tails renders 

the Q-Q plot substantially useless in detecting nonnormality. Certainly we are not 

suggesting, and it is not true, that everyone uses the Q-Q plot by concentrating 
on the central part. Still, these results suggest that alternative or complementary 

graphical tests can be useful, especially for small sample sizes. A part of our efforts 

in the rest of this article address that. 

3. Resampling based tests for univariate normality 

3.1. Test based on X and s2 

Let Xi,X2,...,Xn be iid observations from a ?(?,s2) distribution. A well known 

characterization of the family of normal distributions is that the sample mean X 

and the sample variance s2 are independently distributed (see Kagan,Linnik and 

Rao (1973); a good generalization is Parthasarathy (1976). The generalizations due 

to him can be used for other resampling based tests of normality). If one can test 

their independence using the sample data, it would in principle provide a means 

of testing for the normality of the underlying population. But of course tobtest the 

independence, we will have to have some idea of the joint distribution of X and s2, 
and this cannot be done using just one set of sample observations in the standard 

statistical paradigm. Here is where resampling can be useful. 

Thus, for some ? > 1, let ?*?, X*2,..., X*n, i = 1,2,..., ? be a sample from 

the empirical CDF of the original sample values Xi, X2,..., Xn. Define, 

? = 
\???F 

and ^ = 
^t S (*? 

- 
*?2? 

j=l 3=1 

Let F denote the standard normal CDF and Gm the CDF of the chisquare 
distribution with ra degrees of freedom. Under the null hypothesis of normality, the 

statistics 
o2^ 

?...(^StjO) 
and 

?..^(?L^d) 

are independently distributed as U[0,1). 
Motivated by this, define: for i = 1,2,..., ?, 
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Let w* = (u*,v*),i = 1,2,... ,B. If the null hypothesis is true, the w* should 

be roughly uniformly scattered in the unit square [0,1] ? [0,1]. This is the graphical 
test we propose in this section. A subsampling based test using the same idea will 

be described in a subsequent section. We will present evidence that this resampling 
based graphical test is quite effective, and relatively speaking, is more useful for 

small sample sizes. This is because for small n, it is hard to think of other procedures 
that will have much credibility. For example, if ? = 6, a case that we present here, 
it is not very credible to draw a Q-Q plot. Our resampling based test would be 

more credible for such small sample sizes. 

The following consistency theorem shows that our method will correctly iden- 

tify the joint distribution of (Un, Vn), asymptotically. Although we use the test in 

small samples, the consistency theorem still provides some necessary theoretical 

foundation for our method. 

Theorem 3. Using standard notation, 

sup \Pm(U* < u, V* < v) 
- 

PF(Un <u,Vn<v)\^0 
0<u<l,0<v<l 

in probability, provided F has four moments, where F denotes the true CDF from 
which Xi, X2,..., Xn are iid observations. 

Proof. We observe that the ordinary bootstrap is consistent for the joint distribu- 
tion of (X, s2) if F has four moments. Theorem 3 follows from this and the uniform 
delta theorem for the bootstrap (see van der Vaart (1998)). D 

Under the null hypothesis, (Un, Vn) are uniformly distributed in the unit square 
for each n, and hence also asymptotically. We next describe the joint asymptotic 
distribution of (Un, Vn) under a general F with four moments. It will follow that 
our test is not consistent against a specific alternative F if and only if F has the 
same first four moments as some ?(?,s2) distribution. From the point of view of 
common statistical practice, this is not a major drawback. To have a test consistent 

against all alternatives, we will have to use more than X and s2. 

Theorem 4. Let ??, X2,..., Xn be iid observations from a CDF F with four 
finite moments. Let ?^,?4 denote the third and the fourth central moment of F, 
and ? = ^t. Then, 

(Un, Vn) => H, where ? has the density 

h( U?V) = 

?^?,/1.1_^<?f{'2(^-(?-1)s') V (?-?)<7? 

? 
\2\?2?3s3f-?(?)F~\?) + (? - 

3)s?(F_1(?;))2 

-??((f-\?))2+(f-\?))2)]}. 
(1) 

s VM4 
- s4 

Then, it is well known that (Zin, Z2n) => (Zu Z2) ~ JV(0,0, S), where S = ((s?3)), 
with an = 1,s?2 = 

s?%_? 
and s22 = 1. 

Proof. Let 
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Hence, from the definitions of Un,Vn, it follows that we only need the joint 

asymptotic distribution of 
(F(???),F(^ ^Z2n)).By the continuity theorem for 

weak convergence, therefore, (Un,Vn) => (F(??),F(^^?2)). Thus, we need to 

derive the joint density of (F(??),F(?/^?2)), which will be our h(u,v). 

Let f(x,y) denote the bivariate normal density of (Zi,Z2), i.e., let 

2p? 1 - ?2 

Then, 

H(u,v) = 
pU(Z1)<uM^I^Z2j<v\ 

= 
?(??<f-\?),?2<^^F^\?)) 

= 
/ f(x,y)dydx. 

J ? oo J? oo 

The joint density h(u,v) is obtained by obtaining the mixed partial derivative 

^O^H(u,v). Direct differentiation using the chain rule gives 

h{u,v) = 

/?0(f-1??(f-1(?)/(f-??),/^f-'(?)), 

on some algebra. 
From here, the stated formula for h(u, v) follows on some further algebra, which 

we omit. D 

3.2. Learning from the plots 

It is clear from the expression for h(u, v) that if the third central moment /?3 is zero, 
then U, V are independent; moreover, U is marginally uniform. Thus, intuitively, 
we may expect that our proposal would have less success for distinguishing normal 

data from other symmetric data, and more success in detecting nonnormality when 

the population is skewed. This is in fact true, as we shall later see in our simulations 

of the test. It would be useful to see the plots of the density h(u,v) for some trial 

nonnormal distributions, and try to synchronize them with actual simulations of 

the bootstrapped pairs w*. Such a synchronization would help us learn something 
about the nature of the true population as opposed to just concluding nonnormality. 
In this, we have had reasonable success, as we shall again see in our simulations. 

We remark that this is one reason that knowing the formula in Theorem 4 for the 

asymptotic density h(u, v) is useful; other uses of knowing the asymptotic density 
are discussed below. 

It is informative to look at a few other summary quantities of the asymptotic 

density h(u,v) that we can try to synchronize with our plots of the w*. We have 

in mind summaries that would indicate if we are likely to see an upward or down- 

ward trend in the plot under a given specific F, and if we might expect noticeable 

departures from a uniform scattering such as empty corners. The next two results 

shed some light on those questions. 

Theorem 5. Let (U, V) ~ h(u, v). Then, ? := Corr(U, V) has the following values 

for the corresponding choices of F: 
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? ? .69 if F = Exponential; 

? ? .56 if F = Chisquare(5); 

? ?.44 t/F = Beta(2,6); 

? ?.50 t/F = Beta(2,10); 

? ? .53 z/ F = Poisson(l); 

?? .28 i/F = Poisson(5). 

The values of ? stated above follow by using the formula for h(u, v) and doing 
the requisite expectation calculations by a two dimensional numerical integration. 

A discussion of the utility of knowing the asymptotic correlations will follow the 

next theorem. 

Theorem 6? Letpn = P(U < .2,V < .2), p12 = P(U < .2,V > .8), p13 = P(U > 

.8,V < .2) andpi4 = P(U > .8,V > .8). 
Then, pn = pi2 = Pi3 = Pi4 = -04 if F = Normal; 

Pn = .024, pi2 = .064, pi3 = .0255, pu = -068 if F = Double Exponential; 

pn = .023, pis = .067, p13 = .024, p14 = .071 if F = t(5); 

pn = .01, pi2 = .02, pia = .01, pX4 = .02 if F = Uniform; 

pn = .04, pi2 = .008, pi3 = .004, pu = -148 if F = Exponential; 

Pn = 04, pi2 = .012, pi3 = .006, pu = 097 if F = Beta(2,6); 

pn = .045, pi2 = .01, pi3 = .005, pu = .117 if F = Beta(2,10). 

Proof. Again, the values stated in the Theorem are obtained by using the formula 

for h(u,v) and doing the required numerical integrations. D 

3.3. Synchronization of theorems and plots 

Together, Theorem 5 and Theorem 6 have the potential of giving useful information 

about the nature of the true CDF F from which one is sampling, by inspecting the 

cloud of the w* and comparing certain features of the cloud with the general pattern 
of the numbers quoted in Theorems 5 and 6. Here are some main points. 

1. A pronounced upward trend in the w* cloud would indicate a right skewed 

population (such as Exponential or a small degree of freedom chisquare or a right 
skewed Beta, etc.), while a mild upward trend may be indicative of a population 

slightly right skewed, such as a Poisson with a moderately large mean. 

2. To make a finer distinction, Theorem 6 can be useful. Pii,pi2>Pi3,Pi4 respec- 

tively measure the density of the points in the lower left, upper left, lower right, 
and the upper right corner of the w* cloud. From Theorem 6 we learn that for right 
skewed populations, the upper left and the lower right corners should be rather 

empty, while the upper right corner should be relatively* much more crowded. This 

is rather interesting, and consistent with the correlation information provided by 
Theorem 5 too. 

3. In contrast, for symmetric heavy tailed populations, the two upper corners 

should be relatively more crowded compared to the two lower corners, as we can 

see from the numbers obtained in Theorem 6 for Double Exponential and t(5) 
distributions. For uniform data, all four corners should be about equally dense, with 

a general sparsity of points in all four corners. In our opinion, these conclusions that 

one can draw from Theorems 5 and 6 together about the nature of the true CDF 

are potentially quite useful. 

We next present a selection of scatterplots corresponding to our test above. Due 

to reasons of space, we are unable to present all the plots we have. The plots we 

present characterize what we saw in our plots typically; the resample size ? varies 
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Bootstrap Test for Normality Using ?(0,1) Data; ? = 6 

0.8 

0.6 

0.4 

0.2 - 
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Bootstrap Testing for Normality Using Exp(l) Data; ? = 6 

.0.8 

w ? ? ? ? 

?? ? *. 0.6 
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0.2 

? ?? ? ? # ? 
? ?? ? ? 

... 
'?. 

1 M? ?? >1 * ???-?-???-?-?-?-?-?-1-?-'? 
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BOOTSTRAP TEST FOR NORMALITY USING ?(0,1) DATA; ? = 25 

0.8 - 

0.6 % ? 
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0.2 0.4 0.6 0.8 

BOOTSTRAP TEST FOR NORMALITY USING U[0,1] DATA; ? = 25 
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BOOTSTRAP TEST FOR NORMALITY USING t(4) DATA; ? = 25 
\ ? tt 

0.8 ? ? 

0.6 

0.4 

0.2 
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BOOTSTRAP TEST FOR NORMALITY USING EXP(l) DATA; ? = 25 
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between 100 and 200 in the plots. The main conclusions we draw from our plots 
are summarized in the following discussion. 

The most dramatic aspect of these plots is the transparent structure in the 

plots for the right skewed Exponential case for the extremely small sample size of 

? = 6. We also see satisfactory agreement as regards the density of points at the 

corners with the statements in Theorem 6. Note the relatively empty upper left and 

lower right corners in the Exponential plot, as Theorem 6 predicts, and the general 

sparsity of points in all the corners in the uniform case, also as Theorem 6 predicts. 
The plot for the t case shows mixed success; the very empty upper left corner is not 

predicted by Theorem 6. However, the plot itself looks very nonuniform in the unit 

square, and in that sense the t(4) plot can be regarded as a success. To summarize, 
certain predictions of Theorems 5 and 6 manifest reasonably in these plots, which 

is reassuring. 
The three dimensional plots of the asymptotic density function h(u, v) are also 

presented next for the uniform, t(5), and the Exponential case, for completeness 
and better understanding. 

3.4- Comparative power and a formal test 

While graphical tests have a simple appeal and are preferred by some, a formal test 

is more objective. We will offer some in this subsection; however, for the kinds of 

small sample sizes we are emphasizing, the chi-square approximation is not good. 
The correct percentiles needed for an accurate application of the formal test would 

require numerical evaluation. In the power table reported below, that was done. 

The formal test 

The test is a standard chisquare test. Partition the unit square into subrectangles 

[a?, bj], where a? = 6? = .2%, and let in a collection of ? points, Oij be the observed 

number of pairs w* in the subrectangle [o?,6?]. The expected number of points in 

each subrectangle is .04B. Thus, the test is as follows: 

Calculate ?2 = S (?^?)2 and find the P-value ?(?2(24) > ?2). 
How does the test perform? One way to address the issue is to see whether a test 

statistic based on the plot has reasonable power. It is clear that the plot-based tests 

cannot be more powerful than the best test (for a given alternative), but maybe 

they can be competitive. 
We take the best test to be the likelihood ratio test for testing the alternative 

versus the normal, using the location-scale family for each distribution. The plot- 
based tests include the ?2 test in the paper, two based on the MAD(v*) (median 
absolute deviation of the ?*'s), one which rejects for large values and one for small 

values, and two based on Correlation(u*,v*). Note the likelihood ratio test can 

only be used when there is a specified alternative, but the plot-based tests are 
omnibus. Thus, what counts is whether the plot-based tests show some all round 

good performance. 
The tables below have the estimated powers (for a = 0.05) for various alterna- 

tives, for ? = 6 and 25. 

? 

Normal 

Exponential 
Uniform 

t2 

?5 

?2 MAD(>) MAD(<) Corr(>) Corr(<) LRT 

0.050 0.050 0.050 0.050 0.050 0.050 

0.176 0.075 0.064 0.293 0.006 0.344 

0.048 0.033 0.105 0.041 0.044 0.118 
0.185 0.079 0.036 0.146 0.138 0.197 
0.070 0.059 0.043 0.064 0.067 0.089 
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Plot of Theoretical Asymptotic Density h(x,y) in U[-l,l] Case 

0.5 

Plot of Theoretical Asymptotic Density h(x,y) in t(5) Case 
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Plot of Theoretical Asymptotic Density h(x,y) in Exp(l) Case 

? = 25 MAD(>) MAD(<) Corr(>) Corr(<) LRT 

Normal 

Exponential 
Uniform 

t2 

0.050 

0.821 

0.164 

0.553 

0.179 

0.050 

0.469 

0.000 

0.635 

0.208 

0.050 

0.022 

0.506 

0.003 

0.011 

0.050 

0.930 

0.045 

0.261 

0.104 

0.050 

0.000 

0.038 

0.264 

0.121 

0.050 

0.989 

0.690 

0.721 

0.289 

The powers for ? = 6 are naturally fairly low, but we can see that for each 

distribution, there is a plot-based test that comes reasonably close to the LRT. For 

the Exponential, the correlation (>) test does very well. For the uniform, the best 

test rejects for small values of MAD. For the t's, rejecting for large values of MAD 

works reasonably well, and the ?2 and two correlation tests do fine. These results 

are consistent with the plots in the paper, i.e., for skewed distributions there is a 

positive correlation between the u*'s and i?'s, and for symmetric distributions, the 

differences are revealed in the spread of the v*'s . On balance, the Corr(>) test for 

suspected right skewed cases and the ?2 test for heavy-tailed symmetric cases seem 

to be good plot-based formal tests. However, further numerical power studies will 

be necessary to confirm these recommendations. 

3.5. Another pair of statistics 

One of the strengths of our approach is that the pair of statistics that can be used 

to define Un,Vn is flexible, and therefore different tests can be used to test for 

normality. We now describe an alternative test based on another pair of statistics. 
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It too shows impressive power in our simulations in detecting right skewed data for 

quite small sample sizes. 

Let Xi,X2,... ,Xn be the sample values and let Q,s denote respectively the 

interquartile range and the standard deviation of the data. From Basu's theorem 

(Basu (1955)), ^ and s are independent if X\, X2,... ,Xn are samples from any 

normal distribution. The exact distribution of ^ in finite samples is cumbersome. 

So in forming the quantile transformations, we use the asymptotic distribution of 

^. This is, admittedly, a compromise. But at the end, the test we propose still 

works very well at least for right skewed alternatives. So the compromise is not a 

serious drawback at least in some applications, and one has no good alternative to 

using the asymptotic distribution of ^. The asymptotic distribution of ^ for any 

population F with four moments is explicitly worked out in DasGupta and Haff 

(2003). In particular, they give the following results for the normal, Exponential 
and the Beta(2,10) case, the three cases we present here as illustration of the power 
of this test. 

(a) y/?(^ 
- 1.349) =* N(0,1.566) if F = normal; 

(b) V^(^ 
- 1-099) =* iV(0,3.060) if F = Exponential. 

(c) y/?(^ 
- 1-345) => N(0,1.933) if F = Beta(2,10). 

Hence, as in Subsection 3.1, define: 

u? = 
*(^(? 

- 
?))> and ?? = Gn-i((n - 

1)^) and w* = ?,<); note that 

t2 is the appropriate variance of the limiting normal distribution of ^* as we 

indicate above. As in Subsection 3.1, we then plot the pairs w* and check for an 

approximately uniform scattering, particularly lack of any striking structure. 

The plots below are for the normal, Exponential and Beta(2,10) case; the last 

two were chosen because we are particularly interested in establishing the efficacy 
of our procedures for picking up skewed alternatives. It is clear from the plots that 

for the skewed cases, even at a small sample size ? = 12, they show striking visual 

structure, far removed from an approximately uniform scattering. In contrast, the 

plot for the normal data look much more uniform. 

Exactly as in Subsection 3.1, there are analogs of Theorem 3 and Theorem 4 

for this case too; however, we will not present them. 

We now address the multivariate case briefly. 

4. Resampling based tests for multivariate normality 

As in the univariate case, our proposed test uses the independence of the sample 
mean vector and the sample variance-covariance matrix. A difficult issue is the 

selection of two statistics, one a function of the mean vector and the other a function 

of the covariance matrix, that are to be used, as in the univariate case, for obtaining 
the w* via use of the quantile transformation. We use the statistics dX, and either 

tr(E_15), or la. Our choice is exclusively guided by the fact that for these cases, 

the distributions of the statistics in finite samples are known. Other choices can (and 

should) be explored, but the technicalities would be substantially more complex. 

Test 1. Suppose Xi,X2,..., Xn are iid p- variate multivariate normal observations, 
distributed as ??(?,S). Then, for a given vector c, c'X ~ Np(c'? , ^?'??), and 

tr(E_15) ~ chisquare(p(n ? 1)). Thus, using the same notation as in Section 3.1, 

?? = 
f(^^?^ 

and Vn = GplH.l)(tr(L-1S)) 
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Test for Univariate Normality Using IQR and s; Data = N(0,1), ? = 12 
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Test for Univariate Normality Using IQR and s; Data = Beta(2,10), ? = 12 

0.8 
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are independently U[0,1] distributed. For i ? \,2,...,B, define 

< = 
*(^(^?C'*}) 

and v; = 
G^^itr^S:)), 

where Xi , S* are the mean vector and the covariance matrix of the ith bootstrap 
sample, and X,S are the mean vector and the covariance matrix for the original 
data. As before, we plot the pairs w* = (u*, v*), i = 1,2,..., ? and check for an 

approximately uniform scattering. 

Test 2. Instead of tr(E_15), consider the statistic 
||| 

~ ??=? X2in-i)i where the 

chisquare variables are independently distributed. 

For the special case ? = 2, the distribution can be reduced to that of x \2?~A) 

(see Anderson (1984)). Hence, Un (as defined in Test 1 above), and 

Vn = G2n-4 
V PI*/ 

are independently U[0,1] distributed. Define now u? as in Test 1 above, but 

Vi-G2"-4l2|^irJ' |5|i 

and plot the pairs tu* = (u*, v* ) to check for an approximately uniform scattering. 

The CDF of O can be written in a reasonably amenable form also for the case 

? = 3 by using the Hypergeometric functions, but we will not describe the three 
dimensional case here. 

As in the univariate case, we will see that Tests 1 and 2 can be quite effective 

and especially for small samples they are relatively more useful than alternative 
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tests used in the literature. For example, the common graphical test for bivariate 

normality that plots the Mahalanobis D2 values against chisquare percentiles (see 
Johnson and Wichern (1992)) would not have very much credibility at sample sizes 

such as ? = 10 (a sample size we will try). 

Corresponding to Theorem 3 , we have a similar consistency theorem. 

Theorem 7. supo^^^ \P*(U* < u, V* < v) - PF(Un <u,Vn< v)\ - 0 in 

probability, provided the true CDF F has four moments (in the usual sense for a 

multivariate CDF). 

The nonull asymptotics (i.e., the analog of Theorem 4) are much harder to 
write down analytically. We have a notationally messy version for the bivariate 

case. However, we will not present it due to the notational complexity. 
The plots of the pairs w* corresponding to both Test 1 and Test 2 are important 

to examine from the point of view of applications. The plots corresponding to the 

first test are presented next. The plots corresponding to the second test look very 
similar and are omitted here. 

The plots again show the impressive power of the tests to detect skewness, 
as is clear from the Bivariate Gamma plot (we adopt the definition of Bivariate 

Gamma as (?,?) = (U + W, V + W), where 17, V, W are independent Gammas 

with the same scale parameter; see Li (2003) for certain recent applications of 
such representations.) The normal plot looks reasonably devoid of any structure or 
drastic nonuniformity. Considering that testing for bivariate normality continues 
to remain a very hard problem for such small sample sizes, our proposals appear 
to show good potential for being useful and definitely competitive. The ideas we 

present need to be examined in more detail, however. 

5. Subsampling based tests 

An alternative to the resampling based tests of the preceding sections is to use 

subsampling. From a purely theoretical point of view, there is no reason to pre- 
fer subsampling in this problem. Resampling and subsampling will both produce 
uniformly consistent distribution estimators, but neither will produce a test that is 
consistent against all alternatives. However, as a matter of practicality, it might be 
useful to use each method as a complement to the other. In fact, our subsampling 
based plots below show that there is probably some truth in that. In this section 
we will present a brief description of subsampling based tests. A more complete 
presentation of the ideas in this section will be presented elsewhere. 

5.1. Consistency 

We return to the univariate case and again focus on the independence of the 

sample mean and sample variance; however, in this section, we will consider the 

subsampling methodology?see e.g., Politis, Romano and Wolf (1999). Denote by 

Bb,i,...,Bb,Q the Q = (?) subsamples of size b that can be extracted from the 

sample ??,..., Xn. The subsamples are ordered in an arbitrary fashion except 
that, for convenience, the first q = [n/b] subsamples will be taken to be the 

non-overlapping stretches, i.e., BM = (Xu ..., Xb), Bbi2 = (Xb+i,..., X2b),..., 
Bb,q = (X(q-i)b+i,... ,Xqb)- In the above, b is an integer in (l,n) and [?] denotes 

integer part. 
Let Xb,i and s2 i denote the sample mean and sample variance as calculated from 

subsample ?6|i alone. Similarly, let Ub4 = F(^ {?^~?)), and Vb? = 
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Bivariate Normality Test using ? = 10, c = (1,1), and tr(SIGMAA(-1)S); data = BVN(0,I) 

? ? 

Bivariate Normality Testing with ? = 15, c =(1,1) and tr(SIGMA (-l)S); data = BVGamma 

1 

? i 

h-???-*_?_ 
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Gb-i(?s? b,i). Thus, if ? were n, these would just be Un and Vn as defined 

in subsection 3.1. Note that Ub? and Vb? are not proper statistics since ? and 

s are unknown; our proxies for Ubii and Vb? will be Ub? = F(?( 
*fi~ 

') and 
yjb?l s2 

Vbyi = 
Gb~i(-p-^) respectively. 

Let Hb(x,y) = P(Ub,i < x, H,i < 2/)? Recall that, under normality, Hb is uni- 
form on the unit square. However, using subsampling we can consistently estimate 

Hb (or its limit ? given in Theorem 4) whether normality holds or not. As in Politis 

et al. (1999), we define the subsampling distribution estimator by 

1 
Q 

Lb(x,y) = 
?53l{#M <*,14,? <y}. (2) 
^ t=l 

Then the following consistency result ensues. 

Theorem 8. Assume the conditions of Theorem 4. Then 

(i) For any fixed integer b > I, we have Lb(x, y) ?? Hb(x, y) as ? ?? oo for all 

points (x,y) of continuity of Hb- 

(ii) Ifmin(b,n/b) ?? oo, then supx y \Lb(x, y) - H(x,y)\ ?? 0. 

Proof, (i) Let (x, y) be a point of continuity of Hb, and define 

1 Q 

Lb(^y) = 
?S1^* <*>Vb%i <y}. (3) 
^ <=i 

Note that by an argument similar to that in the proof of Theorem 2.2.1 in Politis, 
Romano and Wolf (1999), we have that 

Lb(x,y) 
- 

Lb(x,y) ->0 

? 
on a set whose probability tends to one. Thus it suffices to show that Lb(x,y) ?? 

Hb(x,y)? But note that ELb(x,y) = Hb(x,y)\ hence, it suffices to show that 

Var(Lb(x,y)) = o(l). 
Let 

Lb(x,y) = 
-^1{?/M 

< x,Vbii < y). 
^ i=l 

By a Cauchy-Schwartz argument, it can be shown that Var(Lb(x,y)) < 

Var(Lb(x,y))\ in other words, extra averaging will not increase the variance. 
But Var(Lb(x,y)) = 0(l/q) = 0(b/n) since Lb(x,y) is an average of q i.i.d. 

random variables. Hence Var(Lb(x, y)) = 0(b/n) 
? 

o(l) and part (i) is proven. 
Part (ii) follows by a similar argument; the uniform convergence follows from the 

continuity of H given in Theorem 4 and a version of Polya's theorem for random 
cdfs. D 

5.2. Subsampling based scatterplots 

Theorem 8 suggests looking at a scatterplot of the pairs wbyi = (Ub?, Vb?) to detect 

non-normality since (under normality) the points should look uniformly scattered 

over the unit square, in a fashion analogous to the pairs w* in Sections 3 and 4. 

Below, we present a few of these scatterplots and then discuss the plots. The 

subsample size ? in the plots is taken to be 2. 

For each distribution, two separate plots are presented to illustrate the quite 
dramatic nonuniform structure for the nonnormal cases. 
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Subsampling Based Test for Normality using ?(0,1) Data; ? = 25,b=2 
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Subsampling Based Test for Normality using Exp(l) Data; ? = 25,b=2 
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Subsampling Based Test for Normality using U[0,1] Data; ? = 25,b=2 
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5.3. Discussion of the plots 

Again, we are forced to present a limited number of plots due to space consid- 

erations. The plots corresponding to the Exponential and the uniform case show 

obvious nonuniform structure; they also show significant amounts of empty space. 
In fact, compared to the corresponding scatterplots for uniform data for the boot- 

strap based test in Section 3.3, the structured deviation from a uniform scattering 
is more evident in these plots. Subsampling seems to be working rather well in de- 

tecting nonnormality in the way we propose here! But there is also a problem. The 

problem seems to be that even for normal data, the scatterplots exhibit structured 

patterns, much in the same way for uniform data, but to a lesser extent. Additional 

theoretical justification for these very special patterns in the plots is needed. 

We do not address other issues such as choice of the subsample size due to space 
considerations and for our focus in this article on just the resampling part. 

6. Scope of other applications 

The main merits of our proposal in this article are that they give a user something 
of credibility to use in small samples, and that the proposal has scope for broad 

applications. To apply our proposal in a given problem, one only has to look for an 

effective characterization result for the null hypothesis. If there are many charac- 

terizations available, presumably one can choose which one to use. We give a very 
brief discussion of potential other problems where our proposal may be useful. We 

plan to present these ideas in the problems stated below in detail in a future article. 

1. Testing for sphericity 

Suppose Xi,X2,...,Xn are iid p-vectors and we want to test the hypothesis Ho: 
the common distribution of the Xi is spherically symmetric. For simplicity of ex- 

planation here, consider only the case ? = 2. Literature on this problem includes 

Baringhaus (1991), Koltchinskii and Li (1998) and Beran (1979). 

Transforming each X to its polar coordinates r,9, under Hq, r and ? are inde- 

pendent. Thus, we can test Hq by testing for independence of r and 0. The data 

we will use is a sample of ? pairs of values (r?,0i),? = 1,2,... ,n. Although the 

testing can be done directly from these pairs without recourse to resampling or 

subsampling, for small n, re or subsampling tests may be useful, as we witnessed 
in the preceding sections in this article. 

There are several choices on how we can proceed. A simple correlation based 
test can be used. Specifically, denoting Di as the difference of the ranks of the r? 
and ? i (respectively among all the r? and all the Oi), we can use the well known 

Spearman coefficient: 

S 
n(n2 

- 
1) 

For small n, we may instead bootstrap the (r?, 0?) pairs and form a scatterplot of 

the bootstrapped pairs for each bootstrap replication. The availability of replicated 
scatterplots gives one an advantage in assessing if any noticeable correlation between 
r and ? seems to be present. This would be an easy, although simple, visual method. 
At a slightly more sophisticated level, we can bootstrap the rs statistic and compare 

percentiles of the bootstrap distribution to the theoretical percentiles under Ho of 

the rs statistic. We are suggesting that we break ties just by halving the ranks. 

For small n, the theoretical percentiles are available exactly; otherwise, we can use 



204 L. Brown et al. 

the percentiles from the central limit theorem for rs as (hopefully not too bad) 

approximations. 
We should mention that other choices exist. An obvious one is Hoeffding's D- 

statistic for independence. Under Ho, nDn + ^ has a known (nonnormal) limit 

distribution. Although an exact formula for its CDF appears to be unknown, from 

the known formula for its characteristic function (see Hoeffding (1948)), we can 

pin down any specified percentile of the limit distribution. In addition, for small 

n, the exact distribution of Dn under Hq is available too. We can thus find either 

the exact or approximate percentiles of the sampling distribution of nDn + ?, and 

compare percentiles of the bootstrap distribution to them. If we prefer a plot based 

test, we can construct a Q-Q plot of bootstrap percentiles against the theoretical 

percentiles under H0 and interpret the plot in the standard manner a Q-Q plot is 

used. 

2. Testing for Poissonity 

This is an important problem for practitioners and has quite a bit of literature, e.g., 
Brown and Zhao (2002), and G?rtler and Henze (2000). Both articles give references 
to classic literature. If Xi, X2,..., Xn are iid from a Poisson(X) distribution, then 

obviously SG=? ^* *s a^so Poisson-distributed, and therefore every cumulant of the 

sampling distribution of S"=? Xi is nX. We can consider testing that a set of spec- 
ified cumulants are equal by using re or subsampling methods. Or, we can consider 
a fixed cumulant, say the third for example, and inspect if the cumulant estimated 
from a bootstrap distribution behaves like a linear function of ? passing through 
the origin. For example, if the original sample size is ? = 15, we can estimate a 

given order cumulant of S? x Xi for each ra = 1,2,..., 15, and visually assess if 

the estimated values fall roughly on a straight line passing through the origin as m 
runs through 1 to 15. The graphical test can then be repeated for a cumulant of 

another order and the slopes of the lines compared for approximate equality too. 

Using cumulants of different orders would make the test more powerful, and we 
recommend it. 

The cumulants can be estimated from the bootstrap distribution either by dif- 

ferentiating the empirical cumulant generating function log(5ZsetsP*(5* = s)) or 

by estimating instead the moments and then using the known relations between 

cumulants and moments (see, e.g., Shiryaev (1980)). 

3. Testing for exponentiality 

Testing for exponentiality has a huge literature and is of great interest in many areas 

of application. We simply recommend Doksum and Yandell (1984) as a review of 

the classic literature on the problem. A large number of characterization results for 

the family of Exponential distributions are known in the literature. Essentially any 
of them, or a combination, can be used to test for exponentiality. We do not have 

reliable information at this time on which characterizations translate into better 

tests. We mention here only one as illustration of how this can be done. 

One possibility is to use the spacings based characterization that (n 
- i + l)Ri 

are iid Exponential(X) where ? is the mean of the population under Ho, and Ri 
are the successive spacings. There are a number of ways that our general method 

can be used. Here are a few. A simple plot based test can select two values of i, for 

example i = [n/2], and [n/2] +1, so that the ordinary bootstrap instead of a m-out 

of-n bootstrap can be used, and check the pairs for independence. For example, a 

scatterplot of the bootstrapped pairs can be constructed. Or, one can standardize 
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the bootstrapped values by X, so that we will then have pairs of approximately 
iid Exponential (1) values. Then we can use the quantile transformation on them 

and check these for uniformity in the unit square as in Section 3. Or, just as we 

described in the section on testing for sphericity, we can use the Hoeffding D- 

statistic in conjunction with the bootstrap with the selected pairs of (n 
? i + \)Ri. 

One can then use two other values of i to increase the diagnostic power of the test. 

There are ways to use all of the (n - i + \)R% simultaneously as well, but we do not 

give the details here. 
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